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SUMMARY

A preconditioning approach based on the arti�cial compressibility formulation is extended to solve the
governing equations for unsteady turbulent reactive �ows with heat release, at low Mach numbers, on
an unstructured hybrid grid context. Premixed reactants are considered and a �amelet approach for
combustion modelling is adopted using a continuous quenched mean reaction rate. An overlapped cell-
vertex �nite volume method is adopted as a discretisation scheme. Arti�cial dissipation terms for hybrid
grids are explicitly added to ensure a stable, discretised set of equations. A second-order, explicit, hybrid
Runge–Kutta scheme is applied for the time marching in pseudo-time. A time derivative of the dependent
variable is added to recover the time accuracy of the preconditioned set of equations. This derivative
is discretised by an implicit, second-order scheme. The resulting scheme is applied to the calculation
of an in�nite planar (one-dimensional) turbulent premixed �ame propagating freely in reactants whose
turbulence is supposed to be frozen, homogeneous and isotropic. The accuracy of the results obtained
with the proposed method proves to be excellent when compared to the data available in the literature.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unsteady and steady reactive �ows with strong density variations due to heat release in com-
bustion processes are often encountered in many system of practical interest. Yet, a large
number of these applications consists of complex geometries either in terms of design or �ow
con�guration. Non-trivial gradients distributed in irregular form throughout the domain may
give an example of the �ow complexity. In addition, in a large number of practical applica-
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tions, the �ow is characterised by a very low Mach number (M) regime. For such cases, the
pressure is thermodynamically constant and it depends only on the �ow motion through its
derivatives in the momentum equation. Furthermore, a coupling of the velocity and pressure
is weakly detected by the total energy equation. Some procedures based on the solution of
the Poisson equation for pressure, as presented by Karki and Patankar [1] and Chen and
Pletcher [2], are applied to calculate these types of �ows, but they present some drawbacks
in comparison with usual compressible methods. Hence, a method which is able to inherit
a large number of routines and procedures developed by a broader community is preferable.
Small modi�cations may leave a compressible code able to treat both compressible and in-
compressible �ows. Among the several types of methods which may serve for this purpose,
the arti�cial compressibility (AC) method has been a well-established numerical approach for
the solution of the compressible Navier–Stokes equations on very low Mach number �ow
regime, either for inert �ows (see Reference [3]) or reactive �ows (see References [4–6]).
For inert �ows, Dourado and Azevedo [7, 8] and Dourado et al. [9] have shown that some
preconditioning techniques work well up to a limit in the low Mach number �ow regime, e.g.
M¿0:01.
On the other hand, �nite volume, unstructured grid techniques have shown, during the

last two decades, a strong versatility to treat a wide range of geometries and complex con-
�gurations in the compressible �ow regime (see References [10, 11]). Localised re�nement
techniques are also easily employed on unstructured grids (see References [12–14]). There-
fore, their use to deal with reactive �ows, in which strong gradients are present throughout
the domain, has clear advantages.
The main e�ort of the present work is to adapt a pseudo-compressibility technique, devel-

oped by one of the authors (see References [4, 6]), to very low Mach number reactive �ows
on a two-dimensional overlapped cell-vertex unstructured grid context. The test cases consist
of both of steady and unsteady freely propagating planar �ames, with appropriate boundary
conditions to ensure a 1D-like mean �ow properties. The results obtained with the present
scheme are compared with other analytical and numerical solutions available in the literature.

2. PHYSICAL MODELLING

2.1. Combustion model

Since the present study is mainly concerned with the numerical method for the solution of the
governing equations rather than the combustion modelling of the combustion process itself,
only a brief description of the modelling is given here. We emphasise the fact that, thanks
to its intrinsic mathematical properties, we are using the chosen turbulent combustion model
to test our numerical approach in the way followed by Corvellec et al. [6]. Our attention
here is focused on the case of highly turbulent reactive �ows that can be typically found
in many industrial systems such as furnaces, primary combustion chambers, turbo-machinery
combustion chambers and afterburners. A large number of these �ows are characterised by
high density changes uniquely related to chemistry. The work adopts a thermo-chemistry
mechanism given by the Bray–Moss–Libby model (BML model) for premixed combustion
which assumes an isenthalpic �ow with in�nitely fast chemical reactions (�amelet regime of
turbulent premixed combustion). More details on such a combustion regime can be found
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in References [15–18]. The high Reynolds number �ow upstream of the considered �ame
is supposed to be homogeneous and isotropic. The approach considers that the combustion
process takes place in in�nitely thin, laminar-like reactive interfaces (�amelets). For such a
process, an observer recording the temperature signal at a given point within the �ow would
obtain basically two values of temperature: T =Tb in the all burnt products and T =Tr in the
unburnt mixture. The combustion process is given by a single bi-valued progress variable c
(c=0 in unburnt mixture and c=1 in the fully burnt products) which plays the role of a
reduced temperature via the following relation:

c=
T − Tr
Tb − Tr (1)

The static pressure is thermodynamically constant as a consequence of the zero Mach number
hypothesis in the sense of Majda and Sethian [19]. Hence, density variations are uniquely
related to temperature changes due to the heat release. Therefore, for an isenthalpic �ow, the
relevant state equation relating temperature T and density � is given by

�T =�rTr =�bTb (2)

With the help of the heat release parameter, �, which characterises the gas expansion
associated with the heat release and which is given by the relation

�=
(Tb − Tr)
Tr

(3)

the state equation, Equation (2), can be rewritten in terms of the progress variable as

�=
�r

1 + �c
(4)

With the use of classical Favre average [20], the mean equation of state is given by

��=
�r

1 + �c̃
(5)

Here, c̃ is the mass weighted Favre average of c de�ned as c̃=�c= ��, where the overbar
denotes the Reynolds average of the corresponding variable. With the hypothesis of unitary
Lewis number, the governing equation for the mean progress variable plays the role of the
energy equation and it can be written in the generic form:

L( ��c̃)= �w (6)

where the L operator regroups the convective and di�usive operators. The mean reaction rate,
�w, appearing in the above equation may take di�erent forms depending on the version of the
combustion model. However, as mentioned before, such details are beyond the scope of the
present paper and only a brief outline of the mean reaction rate model is given here.
As mentioned previously, our primary goal here is to test our numerical approach without

any ambiguity. In that respect, it has been recently shown (see, for instance, References
[5, 21]), that when the analysis pioneered by Kolmogorov et al. [22] is applied to a quenched
eddy-break-up expression of the mean reaction rate, the turbulent �ame brush structure as well
as its propagation velocity are unique and depend only on the quenching value. The reader
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interested in the details of turbulent �ame propagation will �nd a comprehensive survey on
that topic in Reference [23]. Thus, for the evaluation of a numerical scheme, a quenched
form of the mean reaction rate model appears to be a good choice since, by setting the mean
reaction rate to zero, as soon as the progress variable is less than some quenching value, c?,
a unique steady regime of �ame propagation is selected (see also References [24, 25]).
As discussed in Reference [6], a non-continuous quenched form of �w presents the drawback

of introducing a non-continuous pressure gradient within the mean �ame brush at the point
where the progress variable reaches the quenching value c?. The adoption of a non-continuous
production term �w as a function of c̃ makes it more di�cult to test the numerical scheme
which is always mesh re�nement sensitive in the vicinity of the pressure gradient discontinuity.
Therefore, a continuous quenched form of the mean reaction rate, �w, is used in the present
study, which is given by

�w=


0; if c̃6�c?

Cw(1 + �)
(c̃ − �c?)(1− c̃)
(1 + �c?)2

; otherwise
(7)

where Cw is a constant. The recourse to such an expression of �w ensures that mean �ame
brush can propagate steadily with one and only one value of the propagation velocity that we
shall call St0 that can be thought of as being the ‘model intrinsic’ propagation velocity which
is a constant as soon as � and c? are prescribed.
As explained in the next sections, the spatial discretisation of the governing equations,

adopted here, is a cell-vertex �nite-volume formulation using the trapezoidal rule of integra-
tion. This is quite di�erent from the approach used in Reference [6], in which the spatial
discretisation is essentially structured and �uxes are computed through the use of staggered
grids. Therefore, in the present work, the source term is treated in a simpler, way di�erent,
from that presented by Corvellec [6], and it is not given in split form as in that work.

2.2. Pseudo-compressibility technique

Di�erent methods have been presented in the literature to solve the Navier–Stokes equations
in a constant density regime. As presented by Soh and Goodrich [26], a considerable di�culty
for incompressible �ow calculations is associated with the fact that the continuity equation
is in divergence-free form, and its calculation is not time dependent. Furthermore, pressure
is, then, implicitly coupled with the divergence-free constraint on the velocity, without the
existence of a time dependence. Since these are the main di�erences from compressible �ow
calculation, this constraint implies that time integration of the incompressible �ow equations
is not possible in a straightforward manner.
Soh and Goodrich [26] cite the three main approaches for the solution of incompressible,

inert Navier–Stokes equations and present a new approach based on the method developed
by Chorin [3]. The proposed method consists in applying the Crank–Nicolson standard ap-
proximation for all linear and non-linear terms, including pressure and a pseudo-time which is
introduced between two physical time steps. This procedure is used to solve the non-linear sys-
tem for the divergence-free velocity �eld at the advanced time level. The continuity equation,
preconditioned with a pseudo-time derivative of the pressure, and the momentum equations
depend on both the physical and the pseudo-time derivatives. The steady state in pseudo-time
is achieved e�ciently because it does not require a divergence-free velocity �eld. The physical
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solution at the advanced time level is obtained when the system of preconditioned equations
in pseudo-time achieves the steady solution.
For steady reacting incompressible �ows with heat release, Bruel et al. [4] have shown that

the pseudo-compressibility technique has a high performance in terms of convergence and
robustness. Based on this characteristic, Corvellec et al. [5, 6] add the physical time derivative
of density to the preconditioned continuity equation proposed by Soh and Goodrich [26] in
order to obtain a time accurate equation. Therefore, the time accurate, modi�ed continuity
equation can be written in the following generic form:

@ ��
@t
+
1
�
@ �p
@�
+
@ ��ũi
@xi

=0 (8)

where � is the pseudo-compressibility factor expressed in m2 s−2, � is the pseudo-time, t is
the physical time and �p is the static pressure. Equation (8) is written using the classical Favre
[20] averaging procedure. In the present paper, the exact same approach is used, except that
it is reinterpreted in a cell-vertex, hybrid unstructured grid, �nite volume formulation.
Bruel et al. [4] show that, from the analysis carried out by Chang and Kwak [27], two

pseudo-Mach numbers and pseudo-sound speeds should be considered: one for the reactants
and another for the products. The pseudo-Mach number for the reactants, Mr , and for the
products, Mb, are expressed as

Mr =
ur
ar
; Mb =

ub
ab

(9)

where ur and ub are the convection velocities, and ar and ab are the pseudo-sound speeds,
with r and b subscripts indicating reactants and products, respectively. In generic form, the
pseudo-sound speed is given by

a=
√
u2 + � (10)

More details about the analysis carried out for premixed reacting �ow can be obtained from
Bruel et al. [4], where the evolution of the quantity Mr=Mb, as a function of the reduced
pseudo-compressibility factor �̂=�=u2r , is discussed. In Section 7, a brief numerical sensitivity
analysis of the present method to this dimensionless parameter is presented.

3. GOVERNING EQUATIONS

Despite the fact that the test cases presented here are characterised by one-dimensional mean
properties, the governing equations are presented and solved in a two-dimensional form with
the perspective that the proposed method will be used for the calculation of multi-dimensional
�ows in the future. For the BML model, the main variables that describe a reactive turbulent
�ow are the density, ��, the Cartesian velocity components, ũi, the static pressure �p and the
reaction progress variable �c.
The distribution of these variables in the computational domain is obtained through the

solution of the Navier–Stokes equations, with the continuity equation modi�ed by the pseudo-
compressibility approach as given by Equation (8), and a balance equation for the reaction
progress variable. The momentum and progress variable equations are also modi�ed to incor-
porate the unsteady terms related to the arti�cial compressibility approach, following in that
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respect the technique of Rogers et al. [28, 29], Soh and Goodrich [26] and Corvellec et al.
[5, 6]. Accordingly, a pseudo-time derivative is added to the time-dependent Navier–Stokes
equations. These equations, together with the time accurate, preconditioned continuity equation
(8), form the set of equations to be solved. Hence, using the classical Favre [20] average, the
set of equations, written in a �xed system of co-ordinates and in a conservative vector form,
is given by

@Q
@t
+
@q
@�
+
@Eei
@xi

− @Evi
@xi

= S (11)

The equation of state is given by Equation (5) and the various terms which appear in Equa-
tion (11) are de�ned by

Q=



��

��ũ

��ṽ

��c̃


; q=



�p

��ũ

��ṽ

��c̃


; Eex =



� ��ũ

��ũ2 + �p

��ũṽ

��ũc̃


; Eey =



� ��ṽ

��ũṽ

��ṽ2 + �p

��ṽc̃



Evx =



0

��xx − ��ũ′′u′′

��xy − ��ũ′′v′′

��D
@c̃
@x

− ��ũ′′c′′


; Evy =



0

��xy − ��ũ′′v′′

��yy − ��ṽ′′v′′

��D
@c̃
@y

− ��ũ′′c′′


; S=



0

0

0

�w



(12)

where �w is the mean reaction rate given by Equation (7), and �′′ is the �uctuation of �
around �̃. The laminar stress tensor for a Newtonian �uid, �ij, is given by

�ij=�l

(
@ui
@xj

+
@uj
@xi

− 2
3
@uk
@xk

�ij

)
(13)

In Equation (11), q is the preconditioned depending variable vector and Q the physical time
depending variable vector. The x and y indexes refer to Cartesian components, Ee and Ev are,
respectively, the Euler and Navier–Stokes �ux vectors given in Equation (12) which, in the
vectorial notation form, are written by E=Ex–̂+ Ey—̂. As a short remark, the Navier–Stokes
equations are written for Eulerian co-ordinates in the present work, whereas Corvellec [5] and
Corvellec et al. [6] use a one-dimensional formulation with the reference frame attached to
the �ame.
The turbulent transport terms, that is the Reynolds stresses, present in Equation (12) need

a closure. For the momentum equations, the Reynolds stress tensor is modelled using a
Boussinesq-like formulation based on the turbulent viscosity concept (see Reference [30]):

��ũ′′i u′′j =−�t
(
@ũi
@xj

+
@ũj
@xi

)
+
2
3

(
��k̃ + �t

@ũk
@xk

)
�ij (14)

where k̃= 1
2 ũ

′′
i u′′i is the kinetic turbulent energy equal to

3
2 ũ

′′u′′ for the homogeneous isotropic
frozen turbulence considered here. With this type of gradient modelling for the Reynolds
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stresses, a new unknown variable, �t , appears. This variable is the turbulent viscosity coef-
�cient, which is not a property of the �uid as the molecular viscosity, but which depends
on the �ow characteristics varying in space and time. Launder and Spalding [31] showed by
dimensional analysis that

�t = ��C�
k̃
2

	̃
(15)

with C� being an experimental constant equal to 0:09.
In the present work, the turbulent kinetic energy, k̃, and its dissipation rate, 	̃, are considered

constant and equal to the values that prevail in the reactants. They are obtained through the

prescription of the root mean square velocity �uctuations u′r =
√
u′2
r and the turbulence integral

length scale li namely:

k̃= 3
2 u

′2
r ; 	̃=C0:75�

k̃
3=2

li
(16)

A gradient hypothesis is also adopted to close the turbulent scalar �ux ��ũ′′c′′, namely (see
Reference [16]):

��ũ′′i c′′=− �t
Sct

@c̃
@xi

(17)

where Sct is the turbulent Schmidt number.
Equations (11), written in integral form using Green’s theorem, are given by

@
@t

∫
V
Q dV +

@
@�

∫
V
q dV +

∮
S

Ee · ñ dS=
∮
S

Ev · ñ dS+
∫
V
S dV (18)

where ñ is the outgoing normal unit vector to surface S of volume V .

4. SPATIAL DISCRETIZATION

The physical time-dependent properties and the static pressure p are stored at the vertices of
the elements. The control volume for a given vertex, i, is de�ned by all elements having i as a
common vertex, as shown in Figure 1. As the control volume can be constructed by di�erent
types of elements on a hybrid grid topology (triangles and=or quadrilaterals), the elementary
cell is named here an element. The boundary �ux integral in Equation (18) is approximated,
as usual in the �nite-volume formulation, using the trapezoidal rule of integration, which
can be shown to be equivalent to a piecewise linear Galerkin approximation with a lumped
mass matrix (see References [32, 33]). Although better shock resolution and the capture of
other discontinuities, as thin �ames, can be obtained using some upwind-based methods (see
References [34–38]), the present formulation is generally better suited for explicit schemes
and it has lower computational cost. To overcome that drawback, a local adaptive re�nement
of the mesh should be used in critical areas of the �ow �eld. The �ux vectors, Ee and Ev, are
computed at the vertices on the outer boundary of the control volume. This scheme is based on
Mavriplis et al. [32, 33] and it proves to be a good technique for the solution of inert steady
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Control Volume
for i=1

Control Volume
for i=3

S
i=2

i=3
f = 5

i=3
f = 2

i=3
f = 1k = 

i=3
1 k = 

i=3
2

i=3
f = 3

k 
= 

i=
3

4

i=3
f = 6

k = 
i=3

6

k = i=3 7 i=3
f = 7

2
k = i=1 θk

S i=1

i=2
for i=2

Control Volume

i=3
f = 4k = 

i=3
5

k = 
i=1

1

k = 
i=3 3i=3

i=1

Figure 1. Domain of in�uence of nodes 1–3 and their local stretch-
ing vector S̃ for hybrid unstructured grid.

and unsteady �ow, as presented by Dourado et al. [7–9], Marviplis and Venkatakrishnan [39]
and Mavriplis [40]. A similar discretisation based on a �nite elements approach is presented
by Manzari et al. [41].
Thus, Equation (18) can be written in discretised form as

V
@ �Qi
@t
+ V

@ �qi
@�
+

nf∑
f=1
( �Eexf�y − �Eeyf�x)=

nf∑
f=1
( �Evxf�y − �Evyf�x) + V �S (19)

where

�q=
1
V

∫
V
q dV; �Q=

1
V

∫
V
Q dV (20)

are the average-dependent variable vectors for pseudo-time � and physical time t, respectively,
and

�S=
1
V

∫
V
S dV (21)

is the average source term vector. It is assumed that Q=Q(q) with the help of the state
equation given by Equation (5). In two-dimensional Cartesian co-ordinates, the product ñ dS
is given by

ñ dS=�y–̂−�x—̂ (22)

As explained before, �E is the average �ux vector at face f calculated as the arithmetic average
of the two �uxes located on the nodes that delimit this face. Here, –̂ and —̂ are the unit vector
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in the Cartesian space. Then, for a given face f, the �ux vector associated to it is given by

�Ef=
En1; f + En2; f

2
(23)

where En1; f and En2; f are the �ux vectors at nodes n1 and n2 that delimit the considered
face f. Further details for triangular and hybrid elements on an unstructured grid context are
presented in previous works (see References [8, 9]).
The implemented algorithm has an edge-based data structure. On an overlapped hybrid

grid �nite volume context there are several con�gurations to calculate the �ux balance of
a given edge. For example, let us consider the face delimited by the nodes (k=1)i=3 and
(i=3), represented in the Figure 1, named in this case nodes n1 and n2, respectively. In this
way, the face direction is also de�ned. The mean �ux vector, inviscid �Eef as viscous �Evf,
are calculated using Equation (23) and their products with Equation (22) give the respective
inviscid and viscous �uxes through this face. For the element on the left side of this face, these
�uxes are added into volumes for the nodes (k=6)i=3 and (k=7)i=3. And for the element
on the right side, these �uxes are subtracted from the volumes associated with the nodes
(k=2)i=3 and (k=3)i=3. If now the considered face is delimited by the nodes (k=2)i=3 and
(i=3), the �uxes of this face are added in the balance of the volume for the node (i=1)
and subtracted from both volumes for the nodes (i=2)≡ (k=7)i=3 and (k=1)i=3. Finally,
for the face delimited by the nodes (i=1) and (k=4)i=3, the �uxes through these faces are
computed only for the volumes for the nodes (i=1) and (k=3)i=3. It should be emphasized
that the �ux calculation procedure here described, using an overlapped hybrid grid, is an
original contribution by the authors. Clearly, this procedure was inspired in previous works
in the literature, but to the authors’ knowledge, there have not been such an implementation
before for an overlapped hybrid grid.
Barth and Jespersen [11] present a discussion about the gradient estimation for higher-order

schemes, and suggest that two constraints must be satis�ed. For a given property, �, the
gradient estimation needs an exact calculation of ∇�i when �i has a linear variation and
∇�i must be de�ned for arbitrary meshes. The gradient estimate should be accurate in order
to keep at least the same order of accuracy of the convective terms. They appear in the stress
tensor terms in Equations (13) and (14) and in the modelling of the turbulent mass �ux term
��ũ′′c′′, given by Equation (17). In this work, the gradients are computed, following Barth and
Jespersen [11], by ∫

V
∇�dV =

∮
S

� · ñ dS (24)

The estimate of the gradient is given by computing the boundary integral (24)

∇�= 1
V

∮
S
� · ñ dS (25)

As noted by Barth and Jespersen [11], in the cell vertex scheme, the gradients are calculated
at the vertices on the outer boundary that delimit the control volume of a given node i (see
Figure 1).
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Thus, in a cell vertex context, the gradient discretisation has the �nal form given by

∇�= 1
V

nf∑
f=1

[(
�̃n1; f + �̃n2; f

2

)
· (̃n dS)f

]
(26)

Using the de�nition given by Equation (22), this last equation can be written as

∇�= 1
V

nf∑
f=1

[(
�̃n1; f + �̃n2; f

2

)
· (�y–̂−�x—̂)f

]
(27)

Here the same approach of trapezoidal rule as used for the discretisation of the convective
terms is adopted. It is easy to show that this approach is equivalent to a second-order �nite
di�erence on an homogeneous mesh. The sub-indexes n1 and n2 have the same meaning as
given before. This procedure is equivalent to the procedure adopted by Mavriplis et al. [32].
Other methods to calculate the gradients to construct viscous or di�usive terms are proposed
in the literature. However, the method used here has shown to be simple and robust enough
for the proposed calculations. Additionally, the proposed discretisation of the gradients given
by Equation (27) is easily adapted for arbitrary meshes, satisfying one of the constraints
pointed by Barth and Jespersen [11].

5. ARTIFICIAL DISSIPATION

For high Reynolds number �ows, the viscous terms of the Navier–Stokes equations become
incapable of providing proper dissipation for stability. The use of highly re�ned grid through-
out the domain may produce the necessary dissipation, but it results in signi�cant increase
in CPU time. Thus, additional arti�cial dissipation terms are needed to stabilise the method
in the subsonic regime and reduce the need for more expensive highly re�ned grids. These
additional dissipative terms cannot compete with physical dissipation in regions where the
viscous phenomena are important and the accuracy of the scheme must be preserved in those
regions of he �ow �eld. Here, an appropriate fourth di�erence bi-harmonic dissipation term
is added as suggested by Mavriplis et al. [32] and applied by Dourado et al. [9] along with
a second di�erence term. A switch based on the pressure gradient is adopted to turn on and
o� the second di�erence arti�cial dissipation term with the correct value, depending on the
�ow local characteristics.
Thus, taking into account that the adopted arti�cial dissipation operator used here is a blend

of an undivided Laplacian and a biharmonic operator, it can be written as

Da(qi)=
nn∑
k=1
[�k −�i]

[
Ak + Ai
2

]
(28)

where

�(q)= k
′(2)q− k(4)∇2q (29)

and nn is the number of nodes located on the boundary of the control volume which delimits
the volume i, as sketched in Figure 1. The A coe�cients are added to adjust these terms for
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highly stretched meshes and preserve the scheme accuracy in viscous dominated regions. The
k

′(2) coe�cient is proportional to an undivided Laplacian of the pressure, which is constructed
as the summation of the pressure di�erences along all edges de�ning the ith control volume.
It is expressed as

k
′(2) = k(2)

nn∑
k=1

|pk − pi|
nn∑
k=1

|pk + pi|
(30)

The second-order term is important only in presence of high pressure gradients, such as found
typically in shocks. Since the code used here is based on a compressible code, the authors
decided to keep all the arti�cial dissipation terms. As a consequence, the k(2) constant has to
be set to zero and an appropriated implementation was devised in order to save computational
time avoiding wasted operations. The constant which de�nes the level of fourth order dissi-
pation k(4) is equal to 1=256 for all calculations presented in this work. This value has been
adequate and ideal for both compressible and incompressible schemes, giving stability, good
convergence and practically no in�uence on the physical terms of the discretised governing
equations. In Section 7 a short study about the e�ect of k(4) on convergence and pressure
gradients versus the progress reaction variable c̃ will be presented.
As discussed by Mavriplis et al. [32], the A coe�cient must take into account both the

spectral radius and the aspect ratio of the considered control volume on a stretched mesh.
Then, it is necessary to adjust the correct level of this dissipation term on highly stretched
regions and to avoid the competition of this arti�cial dissipation term with the physical one.
This is done by taking:

Ak = 
1k cos2 �k + 
2k sin
2 �k (31)

with subscript i and k corresponding to the variable evaluated at nodes i and k, respectively.
The expressions of the coe�cients 
1 and 
2 in Equation (31) are based on the isotropic
value of the maximum eigenvalue � at each point of the mesh


1 =�(s)
1

s+ 1
�; 
2 =�(s−1)

s
s+ 1

� (32)

where s represents the magnitude of the stretching vector S̃ (see Figure 1) and �(r)=1 +
r2=3. For unstructured meshes, an isotropic value of the maximum eigenvalue � of the Euler
equations at each mesh point is given in a discrete approximation by

�=
nf∑
f=1

| �uf�yf − �vf�xf|+ �af
√
�x2 + �y2 (33)

with �u and �v are the Cartesian velocity components and �a is the speed of sound that takes into
account the pseudo-sound speed given by Equation (10). These properties are given by the
average of the properties from the two nodes that delimits the face f, over all boundary faces
nf of the considered volume. As the code is edge-base organised, this arti�cial dissipation term
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was enhanced in order to be consistent with the hybrid grid, where triangular and quadrilateral
elements coexist, in order to keep the conservative characteristic of the scheme. Two imaginary
diagonals are created in quadrilateral elements connecting the opposite nodes. Those imaginary
diagonals must also be taken into account in the process of selecting the stretching vector S̃
of a control volume (see Figure 1). Such an enhancement in the construction of the arti�cial
dissipation terms for a hybrid grid is also an original contribution of the present work. The
projection strategy for the volumes situated over a wall type boundary is taken from Mavriplis
[33]. This strategy is adopted to avoid a false normal gradient due to the way the Laplacian
is numerically evaluated. In this work, the projection strategy was appropriately adapted for
hybrid grids to take into account both triangular and quadrilateral elements on the boundary.

6. PSEUDO AND PHYSICAL-TIME MARCHING

As explained in the previous section, in this work a time accurate unsteady solution consisting
of a steady solution on a pseudo-time for each physical time step is sought. The pseudo-
compressibility method is based on the solution of the time-dependent Navier–Stokes and
progress variable balance equations written in a conservative form. In order to �nd the steady
solution during each physical time step, it is necessary to solve the discretised linear system
of Equation (19). Thus, the physical time derivative is treated as a source term and written
in a form similar to that presented in Equation (21), such that

�ST =
1
V

∫
V

@Q
@t
dV (34)

where �ST is the physical time source term. The time discretisation of this term will be
discussed later in this section. This set of coupled equations can by written as

Vi
dqi
d�
+ [C(qi)−Dv(qi)−Da(qi)]= S(qi)− ST (qi); i=1 : : : n (35)

In the equation above, C(q) is the residual of the convective inviscid term, Dv(q) represents
the viscous dissipation term and Da(q) is the arti�cial dissipation. The source terms related to
the reactive Navier–Stokes equations are represented by S(q), and ST (q) is the physical time
related source term.
Although implicit schemes improve considerably the e�ciency of the time integration nec-

essary to obtain the steady solution, these schemes are not trivial to implement in an unstruc-
tured grid context. Thus the authors decided to adopt an explicit scheme to calculate both
steady and unsteady reacting �ows with heat release. Explicit schemes are easy to implement
both in sequential and in parallel architectures, which is envisaged for future work. In the
present work, an explicit three-stage hybrid Runge–Kutta time-stepping scheme was adopted
for time integration of pseudo-time due to its simplicity, robustness and low computational
cost. The resulting scheme has a satisfactory performance and good e�ciency on unstruc-
tured grid algorithm. The scheme to advance the solution on pseudo-time step proposed by

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1063–1091



UNSTRUCTURED GRID APPLIED TO PREMIXED FLAME PROPAGATION 1075

Manzari et al. [41] is here implemented in the form:

q(0)i = qni

q
i = q
(0)
i − 

 ��Vi [C(q

(
−1)
i )−Dv(q(
−1)i )

−S(q(
−1)i ) + ST (q
(
−1)
i )−Da(q(0)i )] for 
=1; 2; 3

qn+1i = q(3)i

(36)

Here the operators C, Dv and S are created using the properties vector q
(
−1)
i from stage


−1, while the arti�cial dissipation term is calculated only in the �rst stage and held constant
throughout the next stages. The coe�cients adopted in the Equation (36) are: 
1 = 0:6, 
2 = 0:6
and 
3 = 1:0. The physical time derivative in Equation (34) is discretized by an second-order
implicit Euler scheme given by

@Q
@t

∣∣∣∣n+1; 
−1 = 3Qn+1; 
−1 − 4Qn −Qn−12�t
(37)

This time discretisation (Equation (37)) is adopted both by Rogers and Kwak [28] and
Corvellec et al. [6] on a pseudo-time marching implicit scheme context. In the present work,
it was adapted in order to be used with the pseudo-time marching explicit scheme given by
Equation (36).

7. RESULTS

The test cases adopted to evaluate the proposed method consist of steady and unsteady planar
premixed �ames propagating freely. For unsteady �ow calculations, the reactants are at rest
and the �ame propagates throughout the domain. In the steady �ow calculations, the boundary
conditions are imposed such that the �ame does not move and the physical time derivatives
are not considered. Consequently, the corresponding source term in Equation (35) vanishes.
In the present work, the cases named by Corvellec [5] as Cases I and II are considered as
test cases. The parameters of these slow and fast propagating �ames are given in Table I.
The computational domain consists of a strip 0:5 m long and 0:1 m wide. The majority of

the calculations performed in the present work adopt meshes constructed only by quadrilateral
elements and only one division in the normal direction. This mesh topology is used because
the stronger gradients occur in the longitudinal direction and the quadrilateral elements lead
to the optimum discretisation (less number of elements for the same quantity of nodes) in

Table I. Parameters de�ning the test case.

St0 ũr ũ′′r li Cw ��r
Case � �c? (m s−1) (m s−1) (m s−1) (m) Sct (kg m−3 s−1) (kg m−3)

I 5 0.03958 0.5 0.5 1.0 0.001 0.75 200 1.1886
II 5 0.03958 10.0 10.0 10.0 0.001 0.75 8000 1.1886
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Figure 2. Computational mesh with 710 nodes and 354 quadrilateral elements named here as mesh 1.
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Figure 3. Computational mesh with 980 nodes composed by 561 quadrilateral elements and
342 triangular elements, named here as hybrid-mesh 1.

the normal direction. For highly stretched elements, such as those in more re�ned zones,
very small angles between the faces of the elements and the direction of �ow may lead
to inaccurate �ux calculation in Equation (19). A discussion about the e�ect of the shape
of the elements is also presented in References [8, 9, 39]. The coarser mesh with only one
division in the normal direction is shown in Figure 2 with 354 divisions in the longitudinal
direction having a total of 710 nodes and 354 quadrilateral elements. Some di�erent options
for grid points distribution and topology in the longitudinal direction and their in�uence in
the accuracy of the scheme will be presented later. Also, results using both triangular and
quadrilateral elements are presented to show the capability of the proposed method to treat
hybrid grids. An example of a hybrid grid used in this work with triangular and quadrilateral
elements is shown in Figure 3.
The considered �ow has a high Reynolds number with a constant turbulent viscosity �t ,

throughout the domain. As the laminar viscosity in Equation (13) is small compared with its
turbulent equivalent, it is set to zero, �l=0. In a similar way, the laminar di�usion coe�cient
D in the balance equation of the reaction progress variable c̃ is considered equal to zero and
therefore only the turbulent coe�cient Dt is taken into account.
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Figure 4. Pro�les of mean reaction progress variable, mass �ow per unit area ( ��ũ) and pressure gradient
along x direction for mesh 1 with �=75 (m2 s−2).

Two boundary conditions are adopted to appropriately evaluate the proposed method for the
simulation of steady and unsteady �ows. For steady �ow calculations, the incoming reactants
velocity is imposed equal to the turbulent �ame speed, �ur = St0 , at the left side of the domain.
Therefore, the �ame front stays stationary on a �xed frame of reference. The rms velocity u′r
and the progress variable c̃=0 are also imposed at the inlet. The pressure at this boundary
comes from the calculations. On the other hand, for unsteady calculations, the boundary
condition corresponds to a fresh mixture at rest, �ur = 0, as will be better explained later.
At the boundaries Y =0 and 0:1 symmetry boundary condition are applied. This condition
corresponds to imposing normal velocity and normal gradients to these boundaries equal to
zero. At the outlet boundary, on the right side of the domain, only the pressure is imposed
and all other variables come from the calculations.
For steady calculations, the ignition is given by the initial condition for the progress variable

c̃ as a ramp function that goes from c̃=0 at x=0:27m to c̃=1 at x=0:32m. The continuity
equation in this cases gives the value of the product ��ũ such that ( ��ũ)r = ( ��ũ)b = constant. The
initial distribution of ũ can be obtained from this form of the continuity equation, with c̃ given
by the pro�le of ignition and �� given by state equation (4). For all the present calculations,
the numerical parameters for the arti�cial dissipation terms given by Equations (29) and (30)
are k(4) = 1=256 and k(2) = 0. A short analysis of the in�uence of the fourth-order constant
k(4) in the convergence rate and quality of the results will be presented. It will show that
this value is a good compromise between convergence rate and a minimum in�uence on the
results. This is also veri�ed by other authors for inert compressible �ows (see References
[32, 33]).
The �rst results for steady �ow obtained with the proposed method using mesh 1 are

presented in Figure 4. It shows the variation of the pressure gradient (@ �p=@x), progress variable
c̃ and the mass �ux per area unit ��ũ. The �gure shows that the distribution of ��ũ is indeed
solenoidal.
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Figure 5. Convergence history of residual using mesh 1 with �=75 (m2 s−2).

No automatic adaptive grid technique was applied in the present work; therefore, the mesh
needs to be re�ned near to the quench point c?, where the largest gradients appear. Dur-
ing the pseudo-time marching process the position where the strongest gradients appear may
move forward or backward in the �ow �eld until it reaches a steady state, when no more
displacements occur. Hence, in order to keep the critical point in a region su�ciently re�ned
during the pseudo-time marching, the computational grid has a uniformly spaced grid distri-
bution along a path of domain. For mesh 1 shown Figure 2, this region with uniformly spaced
nodes in the longitudinal direction is located between 0:176x60:33 with 300 divisions. As
a consequence, the minimum mesh spacing is �xmin =5:333× 10−4 m. A constant Courant–
Friedrichs–Lewis (CFL) number equal to 0:94 is used throughout the domain for the steady
�ow. Thus, the pseudo-time step �� becomes variable and the minimum value is achieved
in the �nest region of the computational grid. The CFL number for the pseudo-time step is
given by

CFL�= �b
��
�xmin

(38)

where �b = ũb + ãb is the greatest convective eigenvalue based on the pseudo-sound speed
given by Equation (10). As a consequence, the minimum pseudo-time step for mesh 1 is
equal to 2× 10−5 s. The convergence for this test was achieved after 27 500 iterations as
shown in the convergence history presented in Figure 5.
The pro�le of the pressure gradients versus the progress reaction variable, c, obtained with

the present method for this �rst calculation is compared with the result presented by Corvellec
[5]. The comparison is shown in Figure 6. It is possible to see good agreement between the
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Figure 6. Pro�le of pressure gradient versus mean reaction progress
variable for the mesh 1 with �=75 (m−2 s−2).

present calculation and the results obtained by Corvellec [5], with a slight di�erence in the
maximum gradient. The maximum value of pressure gradient obtained with the present method
using mesh 1 is 103:19 Pa m−1, while Corvellec [5] obtained 110:28 Pa m−1, resulting in a
di�erence of 6%.
To analyse the e�ect of mesh re�nement, three other space discretisations were adopted.

The second, named mesh 2, has 50% more divisions in the x direction in the interval located
between 0:17m6x60:33m, giving �xmin =3:56× 10−4 m. The third one, mesh 3, has 100%
more divisions than mesh 1 in the same interval, which gives �xmin =2:67× 10−4 m. The
fourth mesh, named mesh 4, has the range of greater re�nement reduced to 0:22m6x60:30m,
with the same quantity of nodes as mesh 3, which gives a minimum mesh spacing of
�xmin =1:33× 10−4 m. The �nal grid from Corvellec’s who used auto-adaptative re�nement
has �xmin;Corvellec = 7:1× 10−5 m. The results obtained with all the meshes are presented in
Figure 7, where the pro�les of pressure gradients are plotted versus the mean reaction progress
variable. In this �gure it is possible to see the good agreement between the results obtained
with the proposed method and the 1D method presented by Corvellec [5] on a structured
mesh context. For the �nest mesh, no di�erence between the results calculated here and the
one presented in Reference [5] were observed. These results show that the proposed method
is able to correctly capture the evolution of the pressure gradient throughout the �ame.
A short analysis of the in�uence of the choice of the pseudo-compressibility factor � and

the reduced pseudo-compressibility factor �̂ on the convergence rate was carried out. Fig-
ure 8 presents the convergence history of x-direction momentum equation for several �̂, using
mesh 1. The results show that the residue of this equation is a good choice for convergence

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1063–1091



1080 W. M. C. DOURADO, P. BRUEL AND J. L. F. AZEVEDO

c

∂p
/∂

x
[P

a/
m

]

0 0.25 0.5 0.75 1

-50

-25

0

25

50

75

100

Mesh 1
Mesh 2
Mesh 3
Mesh 4
Corvellec et al., 1999

~

c

∂p
/∂

x
[P

a/
m

]

0 0.05 0.1

100

105

110

-

~

Figure 7. Pro�le of pressure gradient versus mean reaction progress
variable for the meshes 1–4.

Figure 8. Error history for the x-direction momentum equation for several reduced pseudo-
compressibility factor �̂ using mesh 1.
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Figure 9. Number of time step necessary to achieve a converged solution (LRHS �� ũ610−4 kgm−2 s−2).

criterion. Figure 9 shows the in�uence of reduced pseudo-compressibility factor �̂ on the
number of time steps necessary to achieve convergence. This result is obtained considering
the convergence criteria for the referred equation as LRHS �� ũ610−4. The comparison between
the results obtained by one of the authors (see Reference [4]) and the present results shows
the same tendency for the optimum value of �̂. It shows that the de�nition of pseudo-sound
speed given by Equation (10) and the pseudo Mach number present by Bruel et al. [4] is also
valid for the present 2D cell-vertex �nite volume method. The results presented here have an
optimum value of �̂opt ≈ 8, in agreement with Bruel et al. [4]. With the help of Figure 8 it is
possible to verify that for very high values of the pseudo-compressibility factor the accuracy
of the solution degrades.
Another short analysis carried out in this work considers the in�uence of the fourth-order

dissipation term constant K (4) on the convergence rate and accuracy in the �nal solution. This
analysis considers only the steady-state solution when the physical derivatives vanish. The
calculation in this analysis used the grid named mesh 3, which is considered re�ned enough
to produce good quality results and also save computational time. Another reason to adopt
this grid is the fact that the main interest is in the e�ect of the level of arti�cial dissipation
on the convergence and solution quality. The maximum root mean square of total residue is

RMS(RHS)=

√
Neq∑
j=1
max(RHSj)2 (39)
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Figure 10. Error history for several fourth-order dissipation terms constant K (4) using mesh 3.

with Neq the number of equations per volume, here is equal to 5. The max RHSj is the max-
imum residue of equation j throughout the discretised domain. Figure 10 presents the histori-
cal evolution of the maximum root mean square of total residue of pseudo-time RMS(RHS).
Based on the Figure 10 it is possible to verify that the calculation converges with approx-
imately 15 000 iterations for all three values considered and that the largest value of K (4)

leads to the lowest value of the residue. This behaviour is to be expected since the arti�cial
dissipation terms are responsible for damping high-frequency error modes, created by the fre-
quency cascading process in any non-linear formulation, which are beyond the resolution of
the current mesh. Therefore, higher values of K (4) yield further damping and, hence, allow for
further convergence of the solution. The in�uence of K (4) on the pressure gradient distribution
through the �ame is shown in the Figure 11. In general no perceived in�uence on the results
is observed. However, it is possible to verify that the high gradients which exist in the region
of discontinuity are more a�ected by a larger K (4). Then, a lower value of K (4) is preferable
because it produces a minimum in�uence of the arti�cial dissipation on the physics of the
phenomena, leading to a satisfactory convergence rate and ensuring numerical stability.
To evaluate the ability of the proposed method to calculate unsteady �ows, a �ame propaga-

tion throughout a �uid at rest is considered as test case. An initial pro�le of the �ame front in
a ramp is supplied as in the steady �ow calculations presented before, and it propagates until
it reaches a steady movement. This is similar to the unsteady numerical study performed by
Corvellec [5]. Thus, to take into account the physical time-dependent phenomena, the related
source term ST indicated in the Equation (34) is calculated for each time step using the time
discretisation presented in Equation (37). To obtain the new properties in the physical time
t, the pseudo-time-depending equations are integrated by the Runge–Kutta scheme presented
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Figure 11. Fourth-order dissipation terms constant K (4) in�uence in the pressure gradient distribution.

in Equation (36) up to a de�ned convergence value or a limit of iterations. From the conver-
gence analysis of steady-�ow equations (ST =0) presented before, it was possible to de�ne
a convergence criteria to stop the pseudo-time integration. Thus, the adopted values for the
residual of the momentum equation in x Cartesian direction is RHS( ��ũ)610−4:5 kg m−2 s−2.
The maximum number of iterations NITER(�)max620 000 is taken as adequate.
The physical properties are indicated in Table I. The �ame brush, at t=0, is supposed to

be formed by the linear c̃ pro�le supposed to propagate at the �ame speed St0 equal to the
theoretical value obtained by Corvellec [5]. Accordingly, since the reactants are at rest, the
incoming velocity imposed at the left side of the domain is null (ur = ũr = 0) and only the
rms �uctuation u′r is given. Eventually, the ũ pro�le is initialised by the aid of the continuity
equation and the equation of state as

ũ= �c̃St0 (40)

The pro�les of mean velocity ũ , the progress variable c̃, the static pressure �p and the
gradient @ �p=@x of the static pressure in the longitudinal direction are shown in Figure 12, at a
given time after the �ame front has reached a steady regime of propagation. It is also possible
to see that the mass �ow through the mean �ame rush calculated by the present numerical
method is equal to the theoretical value given by the steady equation (see Reference [5])

�b �ub =
�r
1 + �

�St0 = 0:495 kg m−2 s−1 (41)

with the parameters of the Case I given in Table I. Figure 13 presents the pro�le of the
pressure gradient @ �p=@x as a function of the progress variable c̃. As can be observed, the
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Figure 12. Several property pro�les for unsteady �ow using mesh 3.

same values are obtained with both steady and unsteady calculations. Figure 13 shows that
the maximum value of @ �p=@x calculated with the present method using the mesh named mesh
3 coincides with the results obtained by Corvellec [5].
Figure 14 shows several progress variable pro�les for di�erent physical times, with a time

step of 0:003 s. This �gure leads to the conclusion that the steady propagation occurs after
some delay of time and continues in a steady way afterwards. Based on Figure 15, it is pos-
sible to see that the front achieves the steady pro�le shape after approximately 0:022 s. This
behaviour is similar to the results obtained by Corvellec [5] with an implicit one-dimensional
approach.
In Figure 16, it is possible to see the evolution of the mean �ame front speed. It shows that

the present explicit two-dimensional method using an unstructured mesh technique predicts the
same mean �ame front speed St as the one-dimensional implicit method described in Reference
[5], and tends asymptotically to the theoretical �ame speed velocity St0 . The present method
also shows good agreement with the analytical results available in Reference [5].
Finally, to test the robustness of the present method to calculate steady fast �ame propaga-

tion, another test case was chosen, called case II. The properties for this test case are given in
Table I. The pro�les of the pressure gradient, the progress variable and the mass �ux per unit
area ��ũ are presented in Figure 17. The variation of the progress reaction variable c̃ along
the longitudinal co-ordinate x for both cases I and II calculated using the proposed numeri-
cal method is compared with the numerical results obtained by Corvellec [5] and presented
in Figure 18. The pro�le of the pressure gradient distribution as a function of the progress
reaction variable is given in Figure 19. The good agreement with the results of [5] obtained
with an implicit method demonstrates that the present method is robust enough to capture cor-
rectly the pressure gradients for the fast �ame. However, and as expected, the strong gradients
observed for the fast �ame �ow requires the �nest grid to be accurately resolved.
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Figure 13. Pro�le of pressure gradient versus mean reaction
progress variable for mesh 3 on unsteady calculation.
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Figure 15. Time evolution of �ame front for c̃=0:1, c̃=0:5 and c̃=0:9.
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Figure 16. Mean �ame front speed evolution for unsteady �ow.
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unit area ��ũ along x co-ordinate axis.
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Figure 18. Mean �ame front speed evolution for steady �ow.
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Figure 19. Pro�le of pressure gradient versus mean reaction
progress variable for fast �ame propagation—Case 2.

8. CONCLUDING REMARKS

With the results discussed in the present work, it is possible to draw the conclusion that
the proposed scheme, based on the pseudo-compressibility method, applied to overlapped,
cell vertex, �nite volumes for hybrid grids, despite its simplicity, is a valid method to solve
the governing equations for a reactive �ow with premixed reactants in the limit of a zero
Mach number. The solution of these equations by the proposed scheme gives results that
are in good agreement with the analytical and numerical solutions available in the literature.
The arti�cial dissipation terms included to stabilise the discretised governing equations and
to avoid oscillations in the results do not in�uence the accuracy of the �nal solution. The
arti�cial dissipation level is explicitly controlled by imposing the value of the k(4) constant.
As the adopted spatial discretisation uses co-located variables and since no upwind or vector

�ux splitting techniques are applied on the computation of convective �ux terms, the code is
simpler yet without loss of quality in the solutions. The comparison between the minimum
grid interval obtained with the auto-adaptive 1D method, proposed by Corvellec et al. [5, 6],
and the present method shows that, to achieve the same solution accuracy, the present scheme
needs a coarser grid than that required by 1D method. Additionally, the use of an explicit,
three-stage, hybrid, time stepping scheme has shown to be powerful enough to calculate the
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steady solution in the pseudo-time for the discretised governing equations. The use of an
explicit time stepping scheme has as drawback a lower maximum allowable CFL number,
resulting in an increased total number of pseudo-time stepping iterations. On the other hand,
the implementation is easier and each iteration is faster. Little e�ort is expected to be spent
for a future code parallelisation, which can be the subject of future studies. Furthermore, the
discretisation of the physical temporal derivative by an implicit scheme allows the recovery
of the actual physical transients.
In conclusion, the proposed unstructured �nite volume discretisation applied to the govern-

ing equations using the pseudo-compressibility method together with a physical time deriva-
tive can be used to calculate steady and unsteady combustion problems. Highly re�ned grids
necessary to capture discontinuities require adaptive re�nement techniques to become more
competitive in practical industrial applications. In unsteady reactive �ow cases, the �ame
brush may travel throughout the domain. Hence, an adaptive Lagrangian–Eulerian approach
on unstructured grids seems to be the best way of enhancing the present scheme by reducing
the total number of grid nodes and degrees of freedom of the system and, consequently, the
total computational time necessary to achieve the �nal solution. Future work will focus on
these ideas.
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